6,750 research outputs found

    An algebraic turbulence model for three-dimensional viscous flows

    Get PDF
    An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number

    Multiple paternity within the brood of single females of Loligo forbesi (Cephalopoda:Loliginidae), demonstrated with microsatellite DNA markers

    Get PDF
    Microsatellite DNA markers developed for the squid Loligo forbesi were used to determine the genotype of a series of embryos obtained from egg strings of individual females. The results demonstrate that at least 2 males had been successful in fertilizing the eggs of a single female. The findings are compatible with observations of male competition at mating in other species of loliginid squid. They are discussed in relation to interpretation of specific questions of cephalopod ecology

    The Distribution of Metallicity in the IGM at z~2.5: OVI and CIV Absorption in the Spectra of 7 QSOs

    Full text link
    We present a direct measurement of the metallicity distribution function for the high redshift intergalactic medium. We determine the shape of this function using survival statistics, which account for both detections and non-detections of OVI and CIV associated with HI absorption in quasar spectra. Our OVI sample probes the metal content of ~50% of all baryons at z~2.5. We find a median intergalactic abundance of [O,C/H]=-2.82; the differential abundance distribution is approximately lognormal with mean ~-2.85 and \sigma=0.75 dex. Some 60-70% the Lya forest lines are enriched to observable levels ([O,C/H]>-3.5) while the remaining ~30% of the lines have even lower abundances. Thus we have not detected a universal metallicity floor as has been suggested for some Population III enrichment scenaria. In fact, we argue that the bulk of the intergalactic metals formed later than the first stars that are thought to have triggered reionization. We do not observe a significant trend of decreasing metallicity toward the lower density IGM, at least within regions that would be characterized as filaments in numerical simulations. However, an [O/H] enhancement may be present at somewhat high densities. We estimate that roughly half of all baryons at these redshifts have been enriched to [O/H]>=-3.5. We develop a simple model for the metallicity evolution of the IGM, to estimate the chemical yield of galaxies formed prior to z~2.5. We find that the typical galaxy recycled 0.1-0.4% of its mass back into the IGM as heavy elements in the first 3 Gyr after the Big Bang.Comment: 23 pages in emulateapj, 19 figures. Accepted to ApJ, pending review of new changes. Revised comparison between our results and Schaye et al (2003

    Hadronic contribution to the muon g-2: a theoretical determination

    Full text link
    The leading order hadronic contribution to the muon g-2, aμHADa_{\mu}^{HAD}, is determined entirely from theory using an approach based on Cauchy's theorem in the complex squared energy s-plane. This is possible after fitting the integration kernel in aμHADa_{\mu}^{HAD} with a simpler function of ss. The integral determining aμHADa_{\mu}^{HAD} in the light-quark region is then split into a low energy and a high energy part, the latter given by perturbative QCD (PQCD). The low energy integral involving the fit function to the integration kernel is determined by derivatives of the vector correlator at the origin, plus a contour integral around a circle calculable in PQCD. These derivatives are calculated using hadronic models in the light-quark sector. A similar procedure is used in the heavy-quark sector, except that now everything is calculable in PQCD, thus becoming the first entirely theoretical calculation of this contribution. Using the dual resonance model realization of Large NcN_{c} QCD to compute the derivatives of the correlator leads to agreement with the experimental value of aμa_\mu. Accuracy, though, is currently limited by the model dependent calculation of derivatives of the vector correlator at the origin. Future improvements should come from more accurate chiral perturbation theory and/or lattice QCD information on these derivatives, allowing for this method to be used to determine aμHADa_{\mu}^{HAD} accurately entirely from theory, independently of any hadronic model.Comment: Several additional clarifying paragraphs have been added. 1/N_c corrections have been estimated. No change in result

    Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity

    Get PDF
    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the KST representation of the Einstein evolution equations. The basic "Mexico City Tests" widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test. All of these tests are found to be stable, except for simulations of high amplitude gauge waves with nontrivial shift.Comment: Final version, as published in Phys. Rev. D; 13 pages, 16 figure

    Suitability of hybrid gravitational waveforms for unequal-mass binaries

    Get PDF
    This article studies sufficient accuracy criteria of hybrid post-Newtonian (PN) and numerical relativity (NR) waveforms for parameter estimation of strong binary black-hole sources in second- generation ground-based gravitational-wave detectors. We investigate equal-mass non-spinning binaries with a new 33-orbit NR waveform, as well as unequal-mass binaries with mass ratios 2, 3, 4 and 6. For equal masses, the 33-orbit NR waveform allows us to recover previous results and to extend the analysis toward matching at lower frequencies. For unequal masses, the errors between different PN approximants increase with mass ratio. Thus, at 3.5PN, hybrids for higher-mass-ratio systems would require NR waveforms with many more gravitational-wave (GW) cycles to guarantee no adverse impact on parameter estimation. Furthermore, we investigate the potential improvement in hybrid waveforms that can be expected from 4th order post-Newtonian waveforms, and find that knowledge of this 4th post-Newtonian order would significantly improve the accuracy of hybrid waveforms.Comment: 11 pages, 14 figure

    Periodic Bursts of Coherent Radio Emission from an Ultracool Dwarf

    Get PDF
    We report the detection of periodic (p = 1.96 hours) bursts of extremely bright, 100% circularly polarized, coherent radio emission from the M9 dwarf TVLM 513-46546. Simultaneous photometric monitoring observations have established this periodicity to be the rotation period of the dwarf. These bursts, which were not present in previous observations of this target, confirm that ultracool dwarfs can generate persistent levels of broadband, coherent radio emission, associated with the presence of kG magnetic fields in a large-scale, stable configuration. Compact sources located at the magnetic polar regions produce highly beamed emission generated by the electron cyclotron maser instability, the same mechanism known to generate planetary coherent radio emission in our solar system. The narrow beams of radiation pass our line of sight as the dwarf rotates, producing the associated periodic bursts. The resulting radio light curves are analogous to the periodic light curves associated with pulsar radio emission highlighting TVLM 513-46546 as the prototype of a new class of transient radio source.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter

    Trends in cancer mortality in the European Union and accession countries, 1980-2000

    Get PDF
    Cancer mortality rates and trends over the period 1980-2000 for accession countries to the European Union (EU) in May 2004, which include a total of 75 million inhabitants, were abstracted from the World Health Organization (WHO) database, together with, for comparative purposes, those of the current EU. Total cancer mortality for men was 166/100 000 in the EU, but ranged between 195 (Lithuania) and 269/100 000 (Hungary) in central and eastern European accession countries. This excess related to most cancer sites, including lung and other tobacco-related neoplasms, but also stomach, intestines and liver, and a few neoplasms amenable to treatment, such as testis, Hodgkin's disease and leukaemias. Overall cancer mortality for women was 95/100 000 in the EU, and ranged between 100 and 110/100 000 in several central and eastern European countries, and up to 120/100 000 in the Czech Republic and 138/100 000 in Hungary. The latter two countries had a substantial excess in female mortality for lung cancer, but also for several other sites. Furthermore, for stomach and especially (cervix) uteri, female rates were substantially higher in central and eastern European accession countries. Over the last two decades, trends in mortality were systematically less favourable in accession countries than in the EU. Most of the unfavourable patterns and trends in cancer mortality in accession countries are due to recognised, and hence potentially avoidable, causes of cancer, including tobacco, alcohol, dietary habits, pollution and hepatitis B, plus inadequate screening, diagnosis and treatment. Consequently, the application of available knowledge on cancer prevention, diagnosis and treatment may substantially reduce the disadvantage now registered in the cancer mortality of central and eastern European accession countrie
    • …
    corecore